Mokhoa o Felletseng oa AI-Optimized Tellurium Purification process

Litaba

Mokhoa o Felletseng oa AI-Optimized Tellurium Purification process

Joalo ka tšepe ea bohlokoa e sa tloaelehang, tellurium e fumana lits'ebetso tsa bohlokoa liseleng tsa letsatsi, lisebelisoa tsa thermoelectric le tlhahlobo ea infrared. Mekhoa e tloaelehileng ea ho hloekisa e tobane le mathata a kang ts'ebetso e tlaase, tšebeliso e phahameng ea matla, le ntlafatso e fokolang ea bohloeki. Sengoliloeng sena se hlahisa ka mokhoa o hlophisehileng hore na mahlale a maiketsetso a bohlale a ka ntlafatsa ka botlalo mekhoa ea tlhoekiso ea tellurium.

1. Boemo ba Hona joale ba Tellurium Purification Technology

1.1 Mekhoa e Tloaelehileng ea ho Hloekisa Tellurium le Meeli

Mekhoa e Meholo ea Tlhoekiso:

  • Vacuum distillation: E loketse ho tlosa litšila tse tlase tse belang (mohlala, Se, S)
  • Ntlafatso ea libaka: E sebetsa haholo bakeng sa ho tlosa litšila tsa tšepe (mohlala, Cu, Fe)
  • Electrolytic refining: E ​​khona ho tlosa litšila tse ngata tse tebileng
  • Lipalangoang tsa mouoane oa lik'hemik'hale: E ka hlahisa tellurium ea ultra-high-purity (grade ea 6N le holimo)

Mathata a ka Sehloohong:

  • Litekanyetso tsa ts'ebetso li its'etleha ho boiphihlelo ho fapana le ts'ebetso e hlophisitsoeng
  • Bokhoni ba ho tlosa litšila bo fihla mefuteng (haholo-holo bakeng sa litšila tse seng tsa tšepe tse kang oksijene le khabone)
  • Tšebeliso e phahameng ea matla e lebisa litšenyehelong tse phahameng tsa tlhahiso
  • Phapang e kholo ea bohloeki ba batch-to-batch le botsitso bo fokolang

1.2 Mekhahlelo ea Bohlokoa bakeng sa Ntlafatso ea Tlhoekiso ea Tellurium

Core Process Parameter Matrix:

Sehlopha sa Parameter Li-Parameters tse khethehileng Impact Dimension
Mekhahlelo ea 'mele Mocheso oa mocheso, profil ea khatello, litekanyetso tsa nako Karohano e sebetsang hantle, tšebeliso ea matla
Mekhahlelo ea lik'hemik'hale Mofuta wa tlatsetso/tekanyo, taolo ya sepakapaka Khetho ea ho tlosa litšila
Lisebelisoa tsa lisebelisoa Geometry ea Reactor, khetho ea thepa Bohloeki ba lihlahisoa, bophelo ba lisebelisoa
Lisebelisoa tse tala Mofuta oa litšila / litaba, sebopeho sa 'mele Khetho ea litsela

2. Moralo oa Kopo oa AI bakeng sa Tlhoekiso ea Tellurium

2.1 Kakaretso ea Boqapi ba Theknoloji

Sistimi ea Ntlafatso ea AI ea mekhahlelo e meraro:

  1. Lera la ho bolela esale pele: Mehlala ea ho lepa sephetho sa ho ithuta ka mochini
  2. Lera la ho ntlafatsa: Li-algorithms tsa ntlafatso ea lipheo tse ngata
  3. Lera la taolo: Litsamaiso tsa taolo ea ts'ebetso ea nako ea nnete

2.2 Sistimi ea ho Fumana le ho sebetsa ha data

Multi-source Data Integration Solution:

  • Lintlha tsa sensor ea lisebelisoa: 200+ parameters ho kenyelletsa mocheso, khatello, sekhahla sa phallo
  • Lintlha tsa tlhahlobo ea ts'ebetso: Liphetho tsa tlhahlobo ea "mass spectrometry" le spectroscopic
  • Lintlha tsa tlhahlobo ea laboratori: Liphetho tsa liteko tse kantle ho marang-rang tse tsoang ho ICP-MS, GDMS, jj.
  • Lintlha tsa nalane ea tlhahiso: Lirekoto tsa tlhahiso ho tloha lilemong tse 5 tse fetileng (lihlopha tse 1000+)

Boenjiniere ba Sebopeho:

  • Letoto la nako le kenyelletsa mokhoa oa ho hula ka mokhoa oa fensetere o thellang
  • Khaho ea ho falla ha litšila likarolo tsa kinetic
  • Nts'etsopele ea matrices a ho sebelisana parametha
  • Ho theha likarolo tsa ho leka-lekana ha thepa le matla

3. Lintlha tse qaqileng tsa Core AI Optimization Technologies

3.1 Tokiso e Tebileng ea ho Ithuta-E Thehiloe Ts'ebetsong ea Paramethara

Neural Network Architecture:

  • Lera le kenyang: liparamente tsa tšebetso tsa 56-dimensional (tse tloaelehileng)
  • Likarolo tse patiloeng: 3 LSTM layers (256 neurons) + 2 lihlopha tse hokahaneng ka botlalo
  • Sekhahla sa tlhahiso: matšoao a boleng ba 12-dimensional (ho hloeka, lintho tse sa hloekang, joalo-joalo)

Maano a Thupelo:

  • Ho ithuta ho fetisa: Koetliso ea pele e sebelisa lintlha tsa tlhoekiso ea litšepe tse tšoanang (mohlala, Se)
  • Ho ithuta ka mafolofolo: Ho ntlafatsa meralo ea liteko ka mokhoa oa D-optimal
  • Ho ithuta ho matlafatsa: Ho theha mesebetsi ea moputso (ntlafatso ea bohloeki, phokotso ea matla)

Maemo a Tloaelehileng a Ntlafatso:

  • Vacuum distillation profile optimization: Phokotso ea 42% ea masala a Se
  • Ntlafatso ea sekhahla sa ntlafatso ea libaka: ntlafatso ea 35% ea ho tlosoa ha Cu
  • Ntlafatso ea tlhahiso ea elektrolyte: keketseho ea 28% ea katleho ea hajoale

3.2 Lithuto tsa Mokhoa oa ho Tlosa Litšila ka Khomphutha

Lipapiso tsa Molecular Dynamics:

  • Nts'etsopele ea ts'ebetso ea Te-X (X=O,S,Se, joalo-joalo) e ka bang teng
  • Ketsiso ea kinetics karohano ea litšila ka mocheso o fapaneng
  • Polelo-pele ea matla a tlamang a tlamang-ho se hloeke

Lipalo tsa Melao-motheo ea Pele:

  • Palo ea matla a ho theha litšila sebakeng sa tellurium lattice
  • Ho bolela esale pele ka mekhoa e metle ea chelating ea limolek'hule
  • Ntlafatso ea litsela tsa tšebetso ea lipalangoang tsa mouoane

Mehlala ea Tšebeliso:

  • Ho sibolloa ha "oksijene" e ncha ea "scavenger LaTe₂", ho fokotsa litaba tsa oksijene ho 0.3ppm.
  • Moralo oa li-agent tse ikhethileng tsa chelating, tse ntlafatsang ts'ebetso ea ho tlosa carbon ka 60%

3.3 Digital Twin le Virtual Process Optimization

Kaho ea Sistimi ea Mafahla a Dijithale:

  1. Moetso oa Jiometri: Tlhahiso e nepahetseng ea 3D ea lisebelisoa
  2. Mohlala oa 'mele: phetisetso ea mocheso e kopaneng, phetiso ea bongata, le matla a mokelikeli
  3. Moetso oa lik'hemik'hale: kinetics e kopantsoeng ea karabelo ea litšila
  4. Mokhoa oa ho laola: Likarabo tsa tsamaiso ea ho etsisa

Ts'ebetso ea Virtual Optimization:

  • Ho etsa liteko tse 500+ tse kopanyang tšebetso sebakeng sa dijithale
  • Ho khetholla li-parameter tsa bohlokoa (CSV analysis)
  • Polelo ea lifensetere tse sebetsang hantle (tlhahlobo ea OWC)
  • Netefatso ea matla a ts'ebetso (Ketsiso ea Monte Carlo)

4. Tsela ea Phethahatso ea Liindasteri le Tlhahlobo ea Melemo

4.1 Moralo oa Phethahatso oa Mokhahlelo

Mohato oa Pele (likhoeli tse 0-6):

  • Phetiso ea litsamaiso tsa motheo tsa ho fumana lintlha
  • Ho theha database ea ts'ebetso
  • Nts'etsopele ea mekhoa ea ho bolela esale pele
  • Ts'ebetsong ea ts'ebetso ea ts'ebetso ea bohlokoa ea ho beha leihlo

Mokhahlelo oa II (likhoeli tse 6-12):

  • Ho phethoa ha tsamaiso ea mafahla ea digital
  • Ntlafatso ea li-module tsa mantlha tsa ts'ebetso
  • Ts'ebetsong ea taolo e koetsoeng ea Pilot
  • Tsoelo-pele ea tsamaiso ea traceability ea boleng

Mokhahlelo oa III (likhoeli tse 12-18):

  • Ts'ebetso e felletseng ea AI
  • Sistimi ea taolo e ikamahanyang le maemo
  • Mekhoa ea tlhokomelo e bohlale
  • Mekhoa ea ho ithuta e tsoelang pele

4.2 Melemo e Lebeletsoeng ea Moruo

Taba e Ithutoang ea Tlhahiso ea Tellurium ea Lithane tse 50 ka Selemo:

Metric Mokhoa o Tloaelehileng AI-Optimized Process Ntlafatso
Bohloeki ba lihlahisoa 5N 6N+ +1N
Theko ea matla ¥8,000/t ¥5,200/t -35%
Katleho ea tlhahiso 82% 93% + 13%
Tšebeliso ea lintho tse bonahalang 76% 89% + 17%
Molemo o akaretsang oa selemo - ¥ limilione tse 12 -

5. Mathata a Setegeniki le Litharollo

5.1 Likotlolo tsa Botekgeniki tsa Bohlokoa

  1. Mathata a Boleng ba Lintlha:
    • Lintlha tsa indasteri li na le lerata le leholo le litekanyetso tse sieo
    • Litekanyetso tse sa lumellaneng ho pholletsa le mehloli ea data
    • Nako e telele ea ho fumana lintlha tsa tlhahlobo ea bohloeki bo phahameng
  2. Kakaretso ea Mohlala:
    • Liphetoho tse tala li baka ho hloleha ha mohlala
    • Botsofali ba lisebelisoa bo ama botsitso ba ts'ebetso
    • Litlhaloso tse ncha tsa sehlahisoa li hloka koetliso ea mohlala
  3. Mathata a ho Kopanya Sisteme:
    • Litaba tsa ho lumellana pakeng tsa lisebelisoa tsa khale le tse ncha
    • Ho lieha ho arabela ka nako ea sebele
    • Liphephetso tsa polokeho le ts'epo ea netefatso

5.2 Litharollo tse ncha

Ntlafatso ea data e ikamahanyang le maemo:

  • Ho hlahisa data e thehiloeng ho GAN
  • Fetisetsa thuto ho lefella khaello ea data
  • Ho ithuta ho se nang leihlo ho sebelisa lintlha tse sa ngolisoang

Mokhoa oa Hybrid Modeling:

  • Mefuta ea data e thibetsoeng ka fisiks
  • Mechanism-guided neural network architectures
  • Multi-fidelity model fusion

Edge-Cloud Collaborative Computing:

  • Ho tsamaisoa ha li-algorithms tsa bohlokoa tsa taolo
  • Cloud computing bakeng sa mesebetsi e rarahaneng ea ho ntlafatsa
  • Khokahano e tlase ea 5G

6. Litaelo tsa Ntšetso-pele ea Kamoso

  1. Intelligent Material Development:
    • Lisebelisoa tse khethehileng tsa tlhoekiso tse entsoeng ke AI
    • Tlhahlobo ea boemo bo holimo ea motsoako o nepahetseng oa tlatsetso
    • Polelo ea mekhoa e mecha ea ho hapa litšila
  2. Ho Ikemela ka ho Feletseng:
    • Boiketsi ba ts'ebetso e bolela
    • Ho iketsetsa mekhoa ea ts'ebetso
    • Boikemisetso ba ho itokisa
  3. Mekhoa ea ho hloekisa Green:
    • Tekanyetso e fokolang ea matla
    • Litharollo tsa ho tsosolosa litšila
    • Tlhokomelo ea nako ea 'nete ea carbon footprint

Ka kopanyo e tebileng ea AI, tlhoekiso ea tellurium e ntse e fetoha ho tloha ho ts'ebetso ea boiphihlelo ho ea ho data-drive, ho tloha ts'ebetsong e arohaneng ho isa ts'ebetsong e felletseng. Likhamphani li eletsoa ho sebelisa leano la "morero o moholo, ho kenya ts'ebetsong ka mekhahlelo", ho etelletsa pele katleho mehatong ea bohlokoa ea ts'ebetso le butle-butle ho haha ​​​​litsamaiso tse bohlale tsa tlhoekiso.


Nako ea poso: Jun-04-2025